Notes on planar semimodular lattices. VIII. Congruence lattices of SPS lattices
نویسندگان
چکیده
منابع مشابه
Notes on Planar Semimodular Lattices. Ii. Congruences
We show that in a finite semimodular lattice, the ordering of joinirreducible congruences is done in a special type of sublattice, we call a tight S7.
متن کاملCongruence Lattices of Finite Semimodular Lattices
We prove that every finite distributive lattice can be represented as the congruence lattice of a finite (planar) semimodular lattice.
متن کاملNotes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices
A recent result of G. Czédli and E. T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding “forks”. We give a construction that accomplishes the same by deleting elements, by “resections”.
متن کاملCongruence-preserving Extensions of Finite Lattices to Semimodular Lattices
We prove that every finite lattice has a congruence-preserving extension to a finite semimodular lattice.
متن کاملAn extension theorem for planar semimodular lattices
We prove that every finite distributive lattice D can be represented as the congruence lattice of a rectangular lattice K in which all congruences are principal. We verify this result in a stronger form as an extension theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra universalis
سال: 2020
ISSN: 0002-5240,1420-8911
DOI: 10.1007/s00012-020-0641-1